ir ’'d Xi'an Jiaotong-Liverpool University
' RSB EE

SCHOOL OF ADVANCED TECHNOLOGY
SAT301 FINAL YEAR PROJECT

Synthesis of Multi-Camera Video Datasets via
Computer Graphics

Final Thesis

In Partial Fulfillment
of the Requirements for the Degree of
Bachelor of Engineering

Student Name : | Qinxin Ren
Student ID : | 1824098
Supervisor : | Ming Xu
Assessor : | Xuchen Wang




Abstract

Deep-learning based pedestrian detection algorithms has made great progress.
However, difficulties arise when the occlusion appears. Occlusion is very common in
single-view scenes, while multi-view scenes can efficiently solve the problem. Forthe
training of deep-learning based pedestrian detection algorithms, large scale of anno-
tated datasets are crucial. The real-world scenes are difficult and time-consuming
to annotate, while the synthesized datasets can annotate the datasets automati-
cally. Therefore, this project aims synthesize multi-camera pedestrian datasets for the
training of deep-learning based pedestrian detection algorithms using the Computer
Graphics technique. The synthesized datasets are then verified using the Computer
Vision technique. Human character models are built to simulate pedestrians in the
real world. These models are programmed to generate in the predetermined area of
the scene randomly. The associated building procedures are described in detail. In
order to provide the annotated ground truth, cameras at different orientations are
placed toshoot the videos. Localization and geometric relationship of the pedestrian
are then validated with the multi-view frames. This project shows that the simulated
datasets are very close to the real-world datasets and suitable for the training of deep

learning pedestrian detection algorithms.

Keywords: Computer Graphics, Multi-view, Synthesized dataset, Peo-

ple detection



Acknowledgements

Words cannot express my gratitude to my professor Ming Xu for his invaluable
patient guidance and feedback. There were tough times for me when completing the
project. It was his encouragement to get me back. This endeavour would not have
been possible without his generous help. I would like to extend my sincere thanks
to my family. Although I'm thousands of miles away from home, they still care and
support me without any reason. When I was exhausted, their encouragement gave
me the power to go through all the dark times and kept my spirits high during the
process. Lastly, I would like to thank all of my friends for the entertainment and
emotional support. It was an incredible, wonderful experience with them during
these four years.



List of Acronyms

JOL Joint Occupancy Likelihood
RSS Repulsive Spatial Sparsity
FPN Feature Pyramid Network

HDRP High Definition Render Pipeline



List of Figures

2.1

2.2

2.3
2.4
2.5
2.6

2.7
2.8
2.9

2.10

2.11

2.12

2.13

2.14

The overall structure of this project, it contains two main parts: syn-
thesize of the datasets and verification of the datasets. ........ 7
Overview: The geometricallywalkableareasis automaticallyrendered

in the navigation, while the surrounding buildings are notrendered.
Pedestrian models are programmed to walk in the area. Photos from
different orientations are generated. Different orientation viewis vali-

dated in homography transformation................... 7

The procedure of creating the initial body for a male character.
Automatically matchingparts. . . . ... ... ............. 9
Customize thebody’sshape. . . . . . ... ... ... . ..., .. 9
The details of dressingthe character..............cccocooneiiiiinc 10
Customize the texture and material of these three parts...............ccoc......... 10
The procedure of exporting the character model..............c..ccccoeiiiieinnns 11
The procedure of binding the human character model. It includes the

skeleton binding and extraction of texture and material............................. 11
The procedure of importing the human models in Unity. Includes the
settings of the parameters...............ccococveiiiiieiiiiccce e 12
The animations of male and female models are different. A Boolean
parameter "walking” is used to switch the status between "idle”

ANd "WaLKING” ..ot 13
Every human character model bonds with the respawnController” script.
The parameters are public and can be modified externally........................ 14
Cameras are placed at the corners of the scene. The inclination angle

is 15 degrees on the x-axis and adding 9o degrees on the y-axis. The
script “GetImage” is added to each camera to take the photos. Dots

and poles are placed on the ground as the benchmark............................... 15
The prefabs of the city scene. There are banners, trees, buildings,
streetlights et al............c.ooooiiiiiiieeeeeeeeee e 15



iii



2.15

2.16
2.17
2.18

2.19
2.20

2.21
2.22
2.23

3.1
3.2
3.3
3.4

3.5
3.6

3.7
3.8
3.9

3.10

3.11

3.12

The prefabs put in the scene and combined together to construct the
city scene The lighting system is also set with the rendering light and

SKY DOX. .t 16
The setup of skybox in Unity..........ccccocooviviieiiiicceeeeeeeeeeeee e 17
The overall output of the city scene............ccccoeevveiiiiiieiiiceeee, 17
”spruit_sunrise” is chosen as the sky box; the script is bonded to the
scene to generate the environment light................c.ccoooiiiii 18
Restrooms and classrooms builtin the scene..............ccccocoveveeveieiirerenennn. 18
The relationships of three basic coordinates. (camera coordinate, im-

age coordinate and world coordinate).............cc.cocoeeveiviiieiiiiieieeee 20
The top view of the SCENe..........c.cooviiviiiiieeeeeeeeeeeeee e, 21
The instance segmentation framework of Mask R-CNN cited from [30]. 22
The framework of FPN cited from [30]........c.ccoooiiiiiiiiieeeeeee 23
The human character models in the file and in the scene.......................... 26
Photo taken in the tOp VIEW..........ccooviviieiiieeciecceeeeee e 27
Randomly generated pedestrians walk in the predetermined area. Pho-
tos are shot from twenty five different orientations................ccocoeveevennnn. 28
The overall structure of the city scene..............cccoeveieiiieieiiiiceeee, 29
The overall structure of the campus scene.............c.ccoeveveieeveeeieiceeeenne. 29
Homography transformation of views of Camerao with Camera1 and
L0721 10 1<) i 15RO RUPRRRRRPPRRN 30
Add the figures of each homography results together, with the weight

OF 0.5 €ACKH........ooiiieee e 30
The images taken from four different views (southwest, northwest,
southeast, and NOTtheast)...........c.coovooiioiioiiieeee e, 31
The gray image of the masks images.............ccccooevveieiiiiiciciciieeeee 32

The output of the Tsai’s algorithm. The left one is world coordinate

and the right one is the image coordinate. The points on each side are
corresponding toeach other..............c.ccooooeiiiiiiiicee e, 33
The result of using JOL algorithm to draw the rectangles. The rect-

angles in each view is corresponding to each other.................c..cccoooene. 34
The result of using RSS algorithm to draw the rectangles. The rect-

angles in each view is corresponding to each other. Only one rectangle
remains oneach Character................cocoviiiiiiiceceeeece e, 34



Contents

1 Introduction

1

1.1 Motivation, aims and objectives . . . . ... ... ... ... ... .. 1
1.2 Literature Review . . . . . . . . ... .. ... ... 2
1.2.1 Computer graphics in synthesized datasets . . . . . ... ... 2

1.2.2 Computer vision in datasets verification . .. ... ... . .. 4

1.3 IndustrialRelevance . . ... ... .. ... ... .. .. ... . ... 4
2 Methodology 6
2.1 Synthesisofthedatasets . ... ....... ... ... ...... 8
2.1.1 Human character modeling . . . . .. ... ........... 8

2.1.2 Cameramodeling............c.ccooevviiiiiieieicieeeeee e 14

2.1.3  Scene MOdeling............ccocvevirieieiiiiiieieiieeeeeeeete et 15

2.2 Verification of the datasets...........ccoooviviiiiiiioiiee e 19
2.2.1 Homography Transformation............c.ccccoeeeviiueiierriererseeeeee e 19

2.2.2  Tsai’s CAlIDIatioN........c.ooouiiiiiiieeeeeceeee e 19

2.2.3 Division of the ground truth into a grid of position......................... 21

2.2.4 Pedestrian detection insingle View...............ccccocvevieiivveeeecrceeeenenne. 21

2.2.5 Joint Occupancy Likelihood............cccoceoiiiiiiniiniiee 23

2.2.6 Repulsive Spatial Sparsity (RSS).......c.ccoovveieiiieeieeeeeeeeee, 24

3 Results 26
3.1 Pedestrian datasets sybthesis............ccccocieiiiiieiiicciceeeeeee, 26
3.2 Pedestrian photosin different orientations..............ccccoevevveiviviciiivieieneene. 27
3.3 Thesynthesized SCENES............cccovveieiriiieeieiceeeeeeeeee e 28
3.4 Homography validation of thefigures.............ccccocoviiiieiiniiee 30
3.5 Masks extracted by using MaskRCNN............c.ccooivveiiiieiccceeeeeee 31
3.6 Tsai’s calibration result.............ccoooiiiiiiiiiieeeee 32
3.7 JOLTESULLS......oouiieiiieeeeeeee e 33



3.8 RSS TeSUILS....coiiiiieeeeeeeee e, 34

4 Conclusions and Future Work 35
4.1 CONCIUSIONS. ......ooviieiieieieeeeeeeeee ettt eneas 35
4.2 Progress ANALYSIS.........cccooviiiuieecieicieeeeeeeeeee e 35
4.3 FULUTE WOTK . ..ot 36

Reference 37

Appendices 40

A C# code 40
A.1 RespawnController..............ccooviiiiiiiiiiiiiceeeeeeee e 40
A2 TeStnNavIgator..........ccooviiiiiiiiiceceeeee e 43

B Matlab code 48
B.1 TSal’s CAliDIationN. .......cc.oovviiuiiieieiicee et 48

C Python code 52
C.1 JOL algorithm.........ccooiiiiiie e 52

C.2 RSS alGOTitRm.......cooiiiiieeeeeee e 63



Chapter 1

Introduction

1.1  Motivation, aims and objectives

Pedestrian detection is an active research area in the computer vision commu-
nity. It has various application scenarios in persistent video surveillance, autonomous
driving, trafficmonitoring, etc. Thetrainingofthedeeplearning pedestrian detection
algorithm requires a large scale of annotated datasets. Although monocular pedes-
trian detection with deep learning techniques [1] [2] has made good progress, there
are still some limitations. The single-camera datasets have the problem of ambiguity
caused by occlusion between people, and that makes the algorithm unable to detect
the occluded pedestrians efficiently. The localization of occluded pedestrians is also
affected in single-view scenes.

In order to improve the robustness and accuracy of the detection, multi-camera
datasets are proposed to provide complementary information. The occluded pedes-
trians can be accurately detected when multi-view scenes are available. The training
of deep learning algorithms needs a tremendous number of annotated datasets. How-
ever, the annotation of multi-view video datasets is a complicated and slow procedure.
Producing a physical nature multi-view dataset is also acomplicated procedure since
it needs to consider the environment and a variety of social behaviours.

Sincetheneedforlargenumbers of correctlylabelled datais essential fortraining
pedestrian detection algorithms. Various applications have been proposed to provide
reliable datasets by using the Computer Graphics technique. The synthesized vir-
tual scenes with real-world backgrounds are presented. They show advantages in
the generation of vast automatically annotated multi-view datasets. The modelling
procedure is simple compared with the real-world scenes.

In this spirit, the first task of this project aims to synthesize large amounts of



CHAPTER 1. INTRODUCTION 2

multi-view datasets based on the Computer Graphics technique. It uses Unity3D
[3] as the tool. These datasets can be automatically annotated and used to train
deeplearning pedestrian detection algorithms. Variousscenes are constructed in this
project based on demand. Multiple virtual cameras with different orientations will
be placed to shoot the scene. They have overlapping fields of vision and are used to
synchronizethe multi-viewdatasets. The generated datasets are automaticallyanno-
tated. They indicate the positions, trajectories, and bounding boxes of pedestrians.
Because ofthenecessity forlarge-scale datasets, human character models are needed
in addition to scenes. In order to ensure the diversity of the datasets, there are more
than 100 human character models have been created. Pedestrians’ trajectories are
pre-programmed to make the human models walk in a predetermined area in the
scene. Because each pedestrian’s path is pre-programmed, its location is known.

The second task of this project is to verify the geometric relationship of the syn-
thesized datasets. The localization and geometric relationship of the pedestrians need
to be calculated. Multiple Computer Vision algorithms are used in the verification.
Since the synthesized dataset is multi-view, and the frames are shot at the same time,
thelocation of each pedestrian in different views should be the same in synchronized
frames. The Joint Occupancy Likelihood (JOL) of each pedestrian is calculated, and
then the Repulsive Spatial Sparsity (RSS) algorithm is used. The results show that
the properties of the synthesized datasets are the same as the real-world datasets.

The organization of this report is shown as follows: In Section 1.2, a historical
review and comparison of synthesized pedestrian datasets are proposed; In Section
1.3, therationale of this project and the industrial relevance are discussed; In Section
2, the methodology used in this project; In Section 3, and results are presented;
Conclusions and future work are proposed in Section 4. Finally, the related work and
code are attached in the appendix.

1.2 Literature Review

1.2.1 Computer graphics in synthesized datasets
(1) Advantages of synthesized datasets

Datasets for deep learning pedestrian detection algorithms often used to be videos
ofreal-world crowds collected in publicplaces [4, 5] ordownloaded from the website.
However, it suffers from legal difficulties. Not every country agrees that the video
with unrecognizable faces can be used without an individual agreement; the video



CHAPTER 1. INTRODUCTION 3

with recognizable faces is even more problematic. Some datasets are captured in
controlled conditions with actors [5], while the scenarios are relatively expensive and
time-consuming to build. The simulated scene over a real-world scenario is then
widely used. The advantages are manifold. It is a very cost-effective way to gen-
erate many data. Privacy is not considered since the scene and human models are
all synthesized. Impractical scenarios in real life can also be built into the simula-
tion. Moreover, the crucial advantageis that the simulated scenes can generate large
amounts of automatically annotated data instead of manual labelling in real-world
scenes.

(2) Limitations of the existing synthesized datasets

Research has used computer graphics simulation in the field of pattern recogni-
tion. [6] used 2D silhouettes for gait analysis applications. [7, 8] also used the same
idea in human action recognition. [9] used 2.5D data to train the Microsoft Kinect
body poserecognition system. [10] wasthe firstto provide a publicly availabledataset
of the synthetic 3D scene. However, according to [11, 12], the existing datasets do
not provide synchronized multi-camera data. They also have a shortage of either low
revolution [13, 14] or lowduration [15, 16, 17, 18]. [19] then proposed a dataset which
is generated from the photo-realistic game GTA V. This dataset was considered as
a solution for multi-view while still causing subproblems, e.g., person detection and
feature collection.

(3) Human character modelling

Therefore, this project proposes a synthesized dataset using Unity3D. Compared
with the previous dataset [10], it shows advantages in generating long duration with
the intrinsic cameras. Since the human models are manually built, the appearances
are adjustable in different conditions. Since the scene is simulated rather than cap-
tured in the game [19], it is more flexible and more scenarios can be generated.
Moreover, for the human character modelling, [20] proposed The PersonX engine to
create the models. The visual variables, e.g., illumination, scenery and background,
are editable in this engine. However, it is a tedious, time-consuming procedure to
adjust all these parameters when building models manually. These details are also
considered not so important in pedestrian detection. Therefore, this project uses the
engine Fuse to create the models. The procedure of building a model is quite simple
since there have been plenty of prefabs on the body, face, and clothes.



CHAPTER 1. INTRODUCTION 4

1.2.2 Computer vision in datasets verification
(1) Homography in datasets calibration

Inverification of the datasets, the spatial distribution of the pedestrians and the
occlusion among them are crucial. The object coordinatesin acommon reference are
estimated to achieve robustness in terms of appearance variability between views. In
most cases of calibration, the homography is the first to be examined [23] . In their
technique [24], Stauffer and Tieu use tracking data to predict homography from one
camera to the next. [23, 24, 25] also compute planar homographies between multi-
camera views instead of projecting the views on a reference ground plane. Those
techniques, however, fail to alleviate the occlusion problem.

(2) Localization of foreground people

After projecting the images into the reference ground plane, [26] use the estimated
trajectories collected by each camera to match objects. The results verify that the
shadow extracted with a person will affect the matching procedure. Both the feet
and head region of the foreground people are extracted in the location detection.
In a multi-view arrangement, Reddy et al. in [27] employ compressed sensing to
recognize and track individuals. They make use of the cameras to extract foreground
silhouettes. Thenin[28], Fleuretetal. usethe multi-viewinfrastructuretoaccurately
follow persons across multiple cameras when the foreground silhouettes are degraded.
A mathematical framework is developed in their work. However, the framework has
high potential false positive rate because the sparsity is not carefully considered.
Therefore, in this project, the framework proposed by [29], which cope with the
limitations of previous work is used. It works well to any number of cameras, even
single cameras. The sparsity in the desired solution is explicitly considered in this
framework.

1.3 Industrial Relevance

Variousdata suggest thatusing deep learning pedestrian detection algorithmsin
multipleindustries could be beneficial. Such technology is required for safety, public
transit regulation, and autonomous driving. At the same time, there was a critical
issue with the absence of correctly labelled datasets in the training of the algorithms.
In this project, various scenes are built through Unity3D. Human character models
are programmed towalkinthe predetermined area. With multi-orientation cameras



CHAPTER 1. INTRODUCTION 5

placed in each scene, it is possible to synthesize massive training datasets. The
verification part of the project further proves that these datasets can be widely used
in the training of deep learning pedestrian detection algorithms. Compared with
traditional real-world scenes, these synthesized datasets show advantages in: (1). It
is possible to use a wide range of pedestrian appearances (e.g., skin, gender, height,
weight, clothes) to generate many synthesized data. (2) Since the pedestrians in the
simulated scene are programmed to generate, the models can be generated for any
location in the scene. It can be programmed to be created in the predetermined area.
(3) Thelocation of the surrounding building and other static objects in the
scene can be included in the training of detection algorithms. It can improve the
training for occlusion detection. (4) Since the ground truth is known, manual data
labelling is not required. It can generate large amounts of automatically
annotated data. Computer-generated images have been successfully applied in
pedestrian detection. A more precise pedestrian detection algorithm may be
achieved due to the datasets. Furthermore, the methodologies created in this
research will be generic and, in theory, relevant to the numerous sectors in which
3D data is now utilized.



Chapter 2

Methodology

The whole structure of the framework is shown in Figure 1. I consider the
following condition is satisfied: (1) the geometrical management of the scene, e.g.,
the “pedestrian region” is the area where pedestrians possibly appear, the obstacles
likethebuilding arerendered asnotwalkablearea, and the pedestrians could eitherbe
occluded or physically unable to present; (2) intrinsic and external cameraparameters
are available. In this project, the works have been done: Scene modelling; Human
character modelling; Camera modelling; Tsai’s calibration; extraction of the masks by
using MaskRCNN; Calculating the JOLto draw rectangles; filtering the rectangles by
using RSS. The pictorial illustration of the framework is shown in the figures below.



CHAPTER 2. METHODOLOGY 7

~ Scene modeling

~| Synthesize the dataset |—={ Pedestrian modeling

“~ Camera modeling

Overall
structure =

~Extract the pedestrians’
masks (MaskRCNN)

~ Verify the dataset — Verify the gemoetric relationship
between pedestrians

\_ Localize the pedestrians (Joint
Occupancy Likelihood and RSS)

Figure2.1: The overall structure of this project, it contains twomain parts: synthesize
of the datasets and verification of the datasets.

Homograph
validated in
Opancy

Scene Geometry

Figures add to validate homograph

Pedestrian Rendering

Homograph between & single view and 10p view

Observation in different oriantatons

Figure 2.2: Overview: The geometrically walkable areas is automatically rendered in
thenavigation, while the surrounding buildings are not rendered. Pedestrian models
are programmed to walk in the area. Photos from different orientations are generated.
Different orientation view is validated in homography transformation.



CHAPTER 2. METHODOLOGY 8

2.1 Synthesis of the datasets

In this part, the details of synthesizing the datasets using Unity3D will be intro-
duced step by step. It includes three main parts: human modeling; scene modeling
and camera modeling.

2.1.1 Human character modeling

The detailed steps of human character modelling are shown as below:

(1) Software introduction

Adobe Fuse CC [21] is a data-driven application for 3D characters modeling. It
allows building human character models using internal library assets. The assets are
high-quality 3D, which contain textures, bodies, clothes, and faces. Each content
contains various attributes, e.g., clothing fabric, torso shapes, hats. These attributes
canbe customized togetherto achieve the finallook. Moreover, the attributeslike the
torso are adjusted automaticallywhen thebody of the character’s size and proportion
ischanged. Thisapplication can alsoexportthehuman charactermodel tothe website
“Mixamo” [22] for further settings.

(2)Assemble the initial body of the character

In this step, the initial body of the character is created. Body parts head, torso,
arms, and legs in the library can be chosen in the right Edit panel. These partscan
be added to the left panel by clicking. Besides, the full matching body parts can be
automatically fused by right-clicking the part and choosing “Add Matching Parts” in
the options menu. The details are shown in the figures below.

Figure 2.3: The procedure of creating the initial body for a male character.



CHAPTER 2. METHODOLOGY 9

- "
@ Add Matching Parts

L

Male Dev CE.

Figure 2.4: Automatically matching parts.

(3) Customize the body’s shape and facial features

In this step, the character’s specific body parts can be customized. Firstly, the
mouse pointer hovers over the body to select the region. The selected part will have
a blue boundary. Then the corresponding attributes in the right Edit panel can be
customized to achieve the desired shape by dragging. The details are shown in the
figure below.

Figure 2.5: Customize the body’s shape.

(4) Dress the character using cloth library assets

In this step, the character can be dressed. The application provides build-in
clothing assets, including tops, bottoms, shoes, hair, hats, eyewear etc.al. These assets
can be chosen in the right Edit panel, then the chosen clothing will be automatically
wrapped around the character’s body. The details are shown in the figure below.



CHAPTER 2. METHODOLOGY 10

Figure 2.6: The details of dressing the character.

(5) Customize the texture and material of the body, hair, and clothing

In this step, the texture of the clothing item can be customized in Texture mode.
The right Edit panel provides texture parameters, which can be adjusted by moving
the button.

For the body part, the skin color, age, skin details can be adjusted. For the
hair part, the hair color, saturation, and extra categories can be adjusted. For the
clothing, the main fabric, collar, pockets et.al can be adjusted. The details are shown
in the figure below.

Figure 2.7: Customize the texture and material of these three parts.

(6) File saving

In this step, the character model can be exported. To further bind the skeletons,
the character needs to export as “.obj” format. The the file needs to be compressed
as a “.zip” file. The details are shown in the figure below.



CHAPTER 2. METHODOLOGY 11

. * Mixamo Fuse

File  E

Azzemble

o
"_.'I’

i m.lle_l:rz.

Figure 2.8: The procedure of exporting the character model.

(7) Skeleton binding of the characters

When the different human characters have been built and exported as zip files,
these characters should be uploaded tothe "Mixamo” to bind the skeleton and extract
thetexture and material. Each of the charactersis tied with 25 skeletons, considering
the running speed of the final program. If more vivid humanoid behavior is needed,
the bind skeleton can add up to standard 65. Texture and material are extracted as
files, respectively, to make the detail of these characters better. The binding procedure
is shown in the figure below.

! e

Figure 2.9: The procedure of binding the human character model. It includes the
skeleton binding and extraction of texture and material.

(8) Unity import of the results

Among these two procedures, 100 characters have been built and bound skeleton.
Then these characters are exported to Unity. In Unity, "ZNewCharacter” is created to
store the character models. All these models’ Animation types are set as Thumanoid”
in the inspector window. Textures and Materials of these models are exported to the



CHAPTER 2. METHODOLOGY 12

project as well. Set the type in "Material Creation Mc” as ”Standard (Legacy)”. The
previously extracted files set the inspector’s characters’ texture and material. After
that, drag these character models to the scene to make prefabs, adjusting thescale
simultaneously. The procedure is shown in the figure below.

Animation | Materials

Figure 2.10: The procedure of importing the human models in Unity. Includes the
settings of the parameters.

(9) Animation binding of the characters

For the prefabs, different animation is bound with different gender characters.
There are two statuses of each character. For male characters, they are bound
with ”m animation”, which contains "walk” and ”idle” status. Female characters
are bound with ”f animation”, with "catwalk”, and ”idle” two status. The trigger of
different statuses is "walking,” a Boolean parameter. This parameter is programmed
to control the movement of characters. When the project starts, the parameter is set
to be "true”; when the characters move to the destination, the parameter is false”.
The procedure of binding the animation is shown in the figure below.



CHAPTER 2. METHODOLOGY 13

Male Animation setting

Add Behaviour

Parameter sefting

Female Animation setting

Figure 2.11: The animations of male and female models are different. A Boolean
parameter “walking” is used to switch the status between “idle” and "walking”.

(10) Human character Programming

For human character programming, a script named "respawnController” is used.
When the keyboard code Space is down, human characters will generate in arandom
position and walk. First of all, to let the human characters walk in the predetermined
area, thenavigationinthe Alwindowneeds tobe baked. After baking, the project will
recognize the plain area automatically, and the trajectory will generate. In the script,
clanguage is used. A function called “Randoms” generates the randomized human
characters list. In the Update function, public
parameters “largestX”, “smallestX”, “largestZ”, and “smallestZ” are used to
constrain the range of character generation. These parameters can be modified
externally, making the script adaptable for different scenarios. The number of
generated characters can be modified externally as well. The external parameters
are shown in the figure below.



CHAPTER 2. METHODOLOGY 14

-

+ SpawnController Static =

-
Tag Untagged = Layer Default =

RandomPos... respawnC...

Add Component

Figure 2.12: Every human character model bonds with the "respawnController”
script. The parameters are public and can be modified externally.

2.1.2 Camera modeling

In the city scenario, twenty-five cameras are put in different orientations. These
are the top view and eight views at 3 different heights. Every camera has either 15,
30 and 45 degrees of inclination and is placed in the corner and middle of side in
the scene. To make the screenshot, scripts are added to these cameras. In the script
“GetImage”, this project is programmed to take a photo when the keyboard code
“S” is pressed. The photos will automatically save in the file “Screenshot”. Besides,
little red dots and poles are put on the floor as the benchmark to convenient the
calibration. These make the calibration procedure more convenient and clearer. The

details are shown in the figure below.



CHAPTER 2. METHODOLOGY 15

+ el Image 1 (Seripi]

FPlace of cameras

Camera settings and parameters

Figure 2.13: Cameras are placed at the corners of the scene. The inclination angle is
15 degrees on the x-axis and adding 9o degrees on the y-axis. The script "GetImage”
is added to each camera to take the photos. Dots and poles are placed on the ground
as the benchmark.

2.1.3 Scene Modeling

There are two scenes built in this project. The first one is the city scene. Con-
struction of this scene can be divided into these steps: 1. set the terrain; 2. put the
prefabs in the scene; 3. set the lighting system. To build this scene, the prefabs are
needed. All the prefabs are shown in the figure below.

banneri0c bannerila bannerllb bannerllec banner12a r2b banneri3a banner13b banneri3c

Figure 2.14: The prefabs of the city scene. There are banners, trees, buildings,
streetlights et al.



CHAPTER 2. METHODOLOGY 16

These prefabs need to be dragged into the scene. The shortcut key “W” is used
to transform the prefabs; “E” is used to rotate the prefabs; “R” is used to resizethe
prefabs. A square is built in the center of this scene, and it is used as the walkable
area for the pedestrians. Various buildings and surrounding structures like bench,
crossroad, and trees are added to the scene. These details are shown in the figures
below.

The buidlings Trees

Benches Crossroad

Figure 2.15: The prefabs put in the scene and combined together to construct the
city scene The lighting system is also set with the rendering light and sky box.



CHAPTER 2. METHODOLOGY 17

t Window Help
Panels
Next Window Ctrl+Tab
Previous Window Ctrl+Shift+Tab
Layouts
Plastic SCM
Asset Store
Package Manager

Asset Management
TextMeshPro

General
Rendering Lighting
Animation Light Explorer

Audio Occlusion Culling
Sequencing fupie ————w |

Figure 2.16: The setup of skybox in Unity.

The whole structure of the scene is shown in the figure below. There are central
square, surrounding buildings, crossroad and trees.

_ the light setup

g

central square

Overall scene structure

crossroad

Figure 2.17: The overall output of the city scene.

Additionally, a High-Definition Render Pipeline (HDRP) project is also created.
Compared with the traditional Lightweight Pipeline (LWRP), HDRP has a massive
advance in graphical realism. It can also achieve realistic graphics in demanding



CHAPTER 2. METHODOLOGY 18

scenarios. Referring to the global datasets, an indoor scene is made by the Unity
HDRP project. It is a scene of campus.

The construction of this scene is the same as the previous scene. Firstly, the
terrain of the campus is set. The skybox is added to the scene, and the material
“spruitsunrise” is selected in the skybox. Then the prefabs are dragged to the scene
to construct the campus scenario. The scene has the following structures: stairs,
rooftop, floor, ceiling, doors, wall, pillar, and roof. These structures are combined to
form these properties: external, classroom, restroom and corridors. Forthe lighting
system, directional light is added and lights up the whole scene. A "spotlight”
and ”AreaLightNeon” are combined to light up the room and located in the right
position in each classroom. The details are shown in the figures below.

Add Component

The scene seftings

Figure 2.18: "spruit sunrise” is chosen as the sky box; the script is bonded to the
scene to generate the environment light.

—

. ---1 T

R '-'| TOw T
---- ---- ST | ]

"""l" ﬁilll
i
d» n- - ~ B

P,
Classroom and restroom Indoor scene of the classroom

Figure 2.19: Restrooms and classrooms built in the scene.

This scene is used for further investigation of the indoor scene. The grid and
human character models can be put in it if necessary.



CHAPTER 2. METHODOLOGY 19

2.2 Verification of the datasets

Since the cameras have generated images of each direction, these images should
then be verified. It is a pedestrian datasets used for pattern recognition, thus the
localization of pedestrian models needs to be outlined. The datasets is a 3d scene, so
each model’s location can not be detected directly. Toachieve this goal, maskRCNN,
Tsai’s calibration algorithms, RSS algorithms are used. The steps are shown in detail
below.

2.2.1 Homography Transformation

Homography describes the position mapping between the world coordinate sys-
tem and the pixel coordinate system. The corresponding transformation matrix is
called the homography matrix (2.1).

Jev w
H=sX (0) fy W X [r1r2t] =sX M[Hrzt] (2.1)
0O 0 1

H: Homography matrix, S: Arbitrary scale factor, M: Czamera intrinsic parameter.

fx v

The matrix can be divided into four parts: ~ - represents the linear trans-

o fy
formation, e.g., scaling, shearing and rotation. [0 0] is used for translation, [uovo]”

is used to generate the perspective transformation. The transformation matrix can
transform one quadrilateral into another quadrilateral.

In this part, OpenCV is used to calculate the homography matrix of two dif-
ferent frames. Initially, PS is used to get the pixel positions of the same location
in two photos of different visual angles. Four positions are needed and stored in a
vector2 parameter. Then use the function findHomography” to calculate the cor-
responding homography matrix. The calculation of the homography matrix needs
the corresponding points “srcPoints” and “dstPoints”. The points are the matrix
in the form of VectoriPoint2fé. After getting the homography matrix, the
function "warpPerspective” can map a picture into another visual angle.

2.2.2 Tsai’s calibration

It can be seen that the homography works well for ground point in world coordi-
nate toimage coordinate transformation, which is a 2d transformation. However, in



CHAPTER 2. METHODOLOGY 20

this project, it is a 3d scene. The rods are fully distorted through homograph trans-
formation. Therefore, Tsai’s algorithm is then used. This algorithm works well for
world coordinate (Xw Yw Zw), camera coordinate (x, y,z), and image coordinate (im-
age pixel and physical coordinate) transformation. The transformation relationships
among these coordinates are shown in the figure below.

o
X
¥ / Camera Coordinate

Pt
o %;
Zw / / X / Image Coordinate
¥

Pu (Xu.Yu)
Ow Nk ' T

Kowr

World Coordinate
P (Xw.Yw, Zw)

Figure 2.20: Therelationships of three basic coordinates. (camera coordinate,image
coordinate and world coordinate)

Inthisproject,itrequirestotransformtheimage fromworld coordinatetoimage
coordinate. The formula is shown in the function (2.2) below.

u—w _ mXwt roYw+ nsZe + t

f ﬁc 31 Xw+ Y+ 1332, + tz’ (2.2)
X

Y u—w mXutroYu+ttnZutty

f Ju raXw+ Yw+ rsZy+ t,

Where R is the orthogonal rotational matrix. Its elements satisfy the condition:

2 2 2
L+, Py =1,
2 2 2
I+ 1+ 13 =1, (2.3)
2 2 2 _
g+, + =1
To achieve this transformation, the Matlab code is written. Besides, a script is also

written in Matlab to save all the world to image points in two "txt” files. One of
these files is to store the ground point, another is to save the height point.



CHAPTER 2. METHODOLOGY 21

2.2.3 Division of the ground truth into a grid of position

The next step is to split the walkable areas into small grids. Small dots are
placed in the square, each 20cm apart in the top view. These small dots will then
be used as the midpoint of the bottom of the rectangle to draw the rectangles. The
height of each rectangle is 170cm, and the width is 0.35 times of height. However,
these rectangles’ absolute world position and pixel position will change when observed
in different orientations. Therefore, Tsai’s algorithm is introduced to achieve this
transformation. Besides, the character of each direction is placed on the ground,
makes the observation more convenient. The figure of top view with small dots is
shown in figure below.

Figure 2.21: The top view of the scene.

2.2.4 Pedestrian detection in single view

In this step, the algorithm of maskRCNN is introduced to extract the mask of
every pedestrian. MaskRCNN is widely used for segmentation and object detection.



CHAPTER 2. METHODOLOGY 22

Bounding boxes and segmentation masks are generated in this model for each instance
of an object in the image. It is based on Feature Pyramid Network (FPN) and a
ResNet101 backbone. The main construction structure is shown in figure below.

RolAlign

Y

Figure 2.22: The instance segmentation framework of Mask R-CNN cited from [30].

Thisis astandard convolutional neural network (ResNet50 and ResNet101) that
acts as a feature extractor. The bottom level detects low-level features (edges and
corners, etc.), and the higher level detects higher-level features (cars, people, etc.).
Theimageis converted from atensor of 1024x1024x3 (RGB) toafeature map of shape
32x32x2048 forward propagation of the backbone network. The network is further
improved by introducing the FPN, which is an extension of the backbone network to
better characterize targets at multiple dimensions. The framework is shown in the

figure below.



CHAPTER 2. METHODOLOGY 23

L z //:l o
Bottom-Up g f 7

Pathway | f

predict‘

Top Down

et
j Prece Pathway

§ / predict
Lateral i
Connection Zeup

—» 1x1 conv

Figure 2.23: The framework of FPN cited from [30].

Since this project needs thelocalization of each pedestrian, then the mask needs
to be detected at first. After using MaskRCNN, the mask of each pedestrian in a
different orientation is shown below. It needs to mention that only the pedestrians’
masks are needed to be detected. Therefore, the category of detection needs to be
narrowed down to only "person”.

2.2.5 Joint Occupancy Likelihood

In step2, the middle point of each rectangle’s bottom and the height, and width
of each rectangle have been calculated. However, there will be too many rectangles if
everyrectangleisdrawn. Therefore, thejoint occupancylikelihood willbe calculated,
then draw the rectangles whose JOL is higher than the threshold. JOLis to calculate
the percentage of mask and size of one rectangle in different views.

First of all, it needs to transform the frames of masks after using MaskRCNN
to gray images. After this transformation, the pixel value of the mask is 255 and the
background part value is 0. Iterate every pixel in this rectangle, and count the ratio
of mask and background pixels. The ratio is called Occupancy Likelihood. After
calculating the Occupancy Likelihood of one rectangle in different views, It needs to
multiply all these likelihoods together and then calculate the square root. The result
is the Joint Occupancy Likelihood. After calculating the JOL of every rectangle, set



CHAPTER 2. METHODOLOGY 24

up a threshold and draw rectangles whose JOL is larger than the threshold. The
pseudocode is shown in the below.

Algorithm 1 JOL algorithm
Input: input parameters ground points, height points, threshold
Output: output JOL rectangles

1: draw JOL rectangles larger than the threshold
2: for height point, ground point in heights points, ground points do
3: H, < height point, ground point
W< Hr * 0.35
iterate every pixel in this rectangle
if the pixel value is larger than 1 then

V+1
end if
OL = v/ W, % H,

Ny  nOL

0:  JOL=n"2%
11: if JOL > thréshold then

12: add to JOL rectangles

Qe N > k

13: end if
14: end for
15: return result

2.2.6 Repulsive Spatial Sparsity (RSS)

It can be seen that there are still plenty of rectangles on each pedestrian after
computing the Joint Occupancy Likelihoods and filtering the rectangles. This is
because the JOL of each pedestrian is different. If the pedestrian’s size is large, the
JOL will be large as well. A universal threshold can not filter all the rectangles.
Therefore, there are multiple rectangles whose JOL is larger than the threshold on
each pedestrian. Therefore, another algorithm RSS is used. It is a greedy algorithm
which iterates all the rectangles on each character. First of all, the JOLs need to be
sorted from the highest to lowest. Then a radius is chosen to filter the rectangles.
Inside of the circle, only the rectangle with the highest JOL will remain. The logic
of the pesudocode is shown in below.



CHAPTER 2. METHODOLOGY

25

Algorithm 2 RSS algorithm

Input: input parameters JOL. rectangles, radius
Output: output RSS rectangles
1: iterate all the rectangles in JOL rectangles
2: while JOL rectngales is not empty do
sort the rectangles from highest to lowest
Hr ¢« JOL rectangles[0]
H, < JOL rectangles[0][”position”]
for JOLrectngaleiin JOL rectangles do
R, & JOL rectangles[il[”position”]
if R p <radiusthen
delete JOL rectangle[i] from JOL rectangles
10: end if

L ® 3 > a £ @

11: end for
12: end while
13: return result




Chapter 3
Results

During this final year, the results are: (1) Create the human character models.
(2) Shoot the pedestrian photos from different orientations. (3) Generate the city
sceneand HDRIcampusscene. (4) Validatethehomography ofthe figures at different
orientations in the synthesized scene. (5) Masks extracted by using MaskRCNN. (6)
Tsai’s calibration result. (7) JOL results. (8) RSS results. These will be discussed in
details.

3.1 Pedestrian datasets sybthesis

More than 100 human character models have also been built during this semester.

The details are shown in the figure below.

Figure 3.1: The human character models in the file and in the scene.

Human character models are programmed to walk in the predetermined area.
The number of randomly generated models is 40 in each scene. Whenever the key-

26



CHAPTER 3. RESULTS 27

board code space is down, 40 random human characters of 100 models will ran-
domly generate in the area. The area is constrained by the parameter “LargestX”,
“LargestZ”, “SmallestX”, and “SmallestZ”. All these parameters can be modified
externally according to the different scenes.

3.2 Pedestrian photos in different orientations

Moreover, the script for photo shooting is also completed. When the program
is running, pressing the keyboard button “s” will let the cameras generate a set
of photos at different orientations. These photos are stored in the relative path
“Assets/Screenshot”. The shooting photos at different orientations with randomly
generated pedestrians are shown in the figures below.

Figure 3.2: Photo taken in the top view.



CHAPTER 3. RESULTS 28

(b Photos taken in the middle altitude.

) § = "By — X -
= X D ve— | | >

_—

(c) Photos taken in the high altitude.

Figure 3.3: Randomlygenerated pedestrianswalkin the predetermined area. Photos
are shot from twenty five different orientations.

3.3 The synthesized scenes

The synthesized city scene is shown in the figure below. There are a central
square, buildings, and trees. The central square is used as the walkable area for the
pedestrians.



CHAPTER 3. RESULTS 29

Figure 3.4: The overall structure of the city scene.

The HDRI campus scene is shown in the Figure 29. It is a campus scene, ren-
dered in HDRI pipeline. It has everything needed in a real-world classroomscene.
Compared with the previous one, itis much morerealistic. Therender resultis shown
as the figure below.

Figure 3.5: The overall structure of the campus scene.



CHAPTER 3. RESULTS 30

3.4 Homography validation of the figures

After generating these scenes, the homography is validated through OpenCV.
For homography mapping, the photos at each orientation are mapped with the top
view photos. The results are shown in figure below.

Figure 3.6: Homography transformation of views of Camerao with Camera1 and
Camera 2.

It can be seen that the photos are transformed successfully. The length of the
poles is different, and it can be considered the shadow of different angles of light.
The figures are added together to figure out whether the transformation is accurate
to have further validation. The adding weight is set as 0.5 to have a clearer result.

The result is shown in the figure below.

Figure 3.7: Add the figures of each homography results together, with the weight of
0.5 each.

It can be seen that the dots coincide perfectly. However, the lines outside the



CHAPTER 3. RESULTS 31

predetermined region somehow incline due to the transformation points being selected
only in the predetermined area.

3.5 Masks extracted by using MaskRCNN

After validating the homography of the synthesized scene, the localization and
geometric relationship of the pedestrians are verified. The result of MaskRCNN is
shown in the figure below.

Figure 3.8: Theimages taken from four different views (southwest, northwest, south-
east, and northeast).

The images are then transformed into the gray level images. These gray images
are shown in the figure 33. It can be seen that the the persons mask are extracted
and transformed into white color.



CHAPTER 3. RESULTS 32

M A

Figure 3.9: The gray image of the masks images.

3.6 Tsai’s calibration result

Theworld coordinate has been transformed toimage coordinate successfully. In
the program, if a point is clicked on the left side, the corresponding calculated point
will be generated on the right side. There are two corresponding points in the image.
One is the ground point and the another one is the height point. The height is set

as 170cm in the program. The output of the Tsai’s algorithm is shown in thefigure
below.



CHAPTER 3. RESULTS 33

click on a point! here!
2500

2000

1500

1000

500 e

Figure 3.10: The output of the Tsai’s algorithm. The left one is world coordinate
and the right one is the image coordinate. The points on each side are corresponding
to each other.

3.7 JOL results

After calculating the JOL, rectangles are drawn if the JOL is larger than the
threshold. The rectangles in different views are corresponding to each other. However,
it can be seen that there are multiple rectangles on each character, and the number
of rectangles on each character is different. This is because the threshold is a fixed
value,whilethesize ofeach characterisdifferent. Therefore, thenumberofrectangles
whose JOL is larger than the threshold on each character is different. The resultis
shown in figure below.



CHAPTER 3. RESULTS 34

Figure 3.11: The result of using JOL algorithm to draw the rectangles. The rectangles
in each view is corresponding to each other.

3.8 RSS results

After applying the RSS algorithm, it can be seen that there is only one rectangle
remains on each character in different views. These corresponding rectangles are
drawn in the same color. The result is shown in the figure below.

Figure 3.12: Theresult of using RSS algorithm to draw the rectangles. The rectangles
in each view is corresponding to each other. Only one rectangle remains on each
character.



Chapter 4

Conclusions and Future Work

4.1 Conclusions

Duringthisyear, Thaverealized modelling and verification part. Besides, human
charactermodelling fitswellin the synthesized scene. The pedestrian models are pro-
grammed towalkinthe predetermined area and are generated randomly. The photos
are shot through the cameras placed at different orientations. Then the dots and
poles are put in the scene as the benchmark to validate the homography. The results
show that the homography transformation has succeeded. Moreover, the localization
and geometric relationship of these characters are verified correctly as well.

In the procedure, difficulties have been met. First of all, human modelling isa
long procedure. Since the existing public models are inadequate, while the project
requires many pedestrian models, “fuse” is used to create the models. Moreover, these
models are set as “rigidBody” to avoid occlusion. Thelighting system in the scene has
been adjusted to make clear photos. The size and position of the benchmark points
are also adjusted for calibration and validation. The radius of RSS is also adjust for
achieving the best result. The results show that the synthesized scene can be used as
the pedestrian detection training dataset. The verification of the synthesized dataset
also means that it has the same properties as the real-world dataset.

4.2 Progress Analysis

Asmentionedinthe Project Specification Report, I should havedone these works
in semester 1: (1) Literature review for the related work. (2) Create the human
character models and add them to the scene. (3) Adjust the models to fit thescene

35



CHAPTER 4. CONCLUSIONS AND FUTURE WORK 36

and program the models to walk in the predetermined area randomly. According
to my preliminary results, these works have been done successfully. More than 100
human character models have been built using the “fuse”. They are then added to
the synthesized scene in Unity3D. These models are programmed to generate and
walk in the predetermined area randomly. C programming language is used in the
scripts. Besides, dots and poles are put in the scene to validate the homography. The
validation is successful, according to the previous analysis. I also need to finish these
work in semester 2: (1)Verify the synthesized datasets. (2) Adjust the datasets. (3)
Finish the final Report. In the final result, algorithms like Tsai’s calibration, Joint
Occupancy Likelihod, MaskRCNN et al are used to verified the datasets. The results
work as the expectation. Matlab, and python scripts are written to achieve these
algorithms in semester 2.

4.3 Future Work

There are still some limitations in the present stage. Firstly, the scene is limited.
Only the city scene has pedestrian models. Moreover, the synthetic dataset should
be adjusted according to the demand. The algorithms I used to verify the dataset
work no so well when too many pedestrians are in the scene and they are occluded.
Therefore, a more robust and high performance algorithm may be used to verify the
datasets in the future.

The advantages of synthetic datasets are obvious. The future work of these
datasets will focus on the following aspects: (1) Build a more interactive, better data
quality synthetic data set engine with richer (and more variable) conditions, giving
users more authority to obtain data that meets as much further research needs as
possible. (2) Research on more efficient unsupervised domain adaptation methods to
make more efficient use of synthetic data and existing real data sets. (3) The problem
of "what-how-why” in visual tasks is deeply studied and explored. The controllability
of syntheticdataisused todesign morescientificquantitativeexperimentsand rating
indexes so that visual research can develop in a balanced way between engineering
and science.



Reference

[1] Wojek, C., Dollar, P., Schiele, B., Perona, P.: Pedestrian Detection: An Evalua-
tion of the Stateof the Art. IEEE Transactions on Pattern Analysis and Machine

Intelligence 34(4), pp. 743—761, 2012.

[2] Benenson, R., Omran, M., Hosang, J., Schiele, B.: Ten Years of Pedestrian
Detection, What Have We Learned?. In: Proceedings of European Conference
on Computer Vision, pp. 613—-627, 2014

[3] ”Unity user manual”, https://docs.unity3d.com/Manual/index.html

[4] J. Ferryman, D. Tweed, An overview of the pets 2007 dataset, in: Workshop on
Performance Evaluation of Tracking and Surveillance, 2007

[5] J.Ferryman, A. Shahrokni, An overview of the pets 2009 dataset, in: Workshop
on Performance Evaluation of Tracking and Surveillance, 2009.

[6] Y. Liu, R. Collins, Y. Tsin, Gait sequence analysis using frieze patterns, in:
Computer Vision —ECCV 2002, vol. 2351, 2002, pp. 657-671.

[7] H. Ragheb, S. Velastin, P. Remagnino, T. Ellis, Vihasi: virtual human action
silhouette data for the performance evaluation of silhouette-based action recog-
nition methods, in: 2008 Second ACM/IEEE International Conference on Dis-
tributed Smart Cameras, ICDSC 2008, 2008, pp. 1—10.

[8] S. Singh, S. Velastin, H. Ragheb, Muhavi: A multicamera human action video
dataset for the evaluation of action recognition methods, in 2010 Seventh IEEE
International Conference on Advanced Video and Signal Based Surveillance
(AVSS), 2010, pp. 48-55.

[9] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A.
Kipman, A. Blake, Real-time human pose recognition in parts from single depth
images, Computer Vision and Pattern Recognition.

[10] Courty, Nicolas, et al. "Using the AGORASET dataset: Assessing for the quality
of crowd video analysis methods.”Pattern Recognition Letters 44 (2014): 161-
170.

37



REFERENCE 38

[11] Anton Milan, Laura Leal-Taix’e, Ian Reid, Stefan Roth, and Konrad Schindler.
Mot16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831,
2016.

[12] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cre-
mers, Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixe. Cvpri9
tracking and detection challenge: How crowded can it get? arXiv preprint
arXiv:1906.04567, 2019.

[13] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. Multiple ob-
ject tracking using k-shortest paths optimization. IEEE transactions on pattern
analysis and machine intelligence, 33(9):1806—1819, 2011.

[14] Lijun Cao, Weihua Chen, Xiaotang Chen, Shuai Zheng, and Kaiqi Huang. An
equalised global graphical model-based approach for multi-camera object track-
ing. arXiv preprintarXiv:1502.03532, 2015.

[15] FrancoisFleuret,Jerome Berclaz, Richard Lengagne, and Pascal Fua. Multicam-
era people tracking with a probabilistic occupancy map. IEEE transactions on
pattern analysis and machine intelligence, 30(2):267—282, 2007.

[16] Tiziana D’Orazio, Marco Leo, Nicola Mosca, Paolo Spagnolo, and Pier Luigi
Mazzeo. A semi-automatic system for ground truth generation of soccer video
sequences. In 2009 Sixth IEEE International Conference on Advanced Video and
Signal Based Surveillance, pages 559—564. IEEE, 20009.

[17] Christophe De Vleeschouwer, Fan Chen, Damien Delannay, Christophe Parisot,
Christophe Chaudy, Eric Martrou, Andrea Cavallaro, et al. Distributed video ac-
quisition and annotation for sport-event summarization. NEM summit, 8, 2008.

[18] J Ferryman and A Shahrokni. An overview of the pets 2009 challenge. 2009.

[19] Kohl, Philipp, et al. "The MTA Dataset for Multi-Target Multi-Camera
Pedestrian Tracking by Weighted Distance Aggregation.” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops. 2020.

[20] Sun, Xiaoxiao, and Liang Zheng. "Dissecting person re-identification from the
viewpointofviewpoint.” Proceedings ofthe IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019.

[21] "Adobe Fuse CC”, https://helpx.adobe.com/beta/fuse/help/create-first-3D-
model.html

[22] Mueller, K., Smolic, A., Droese, M., Voigt, P., Wienand, T.: Multitexture mod-
eling of 3d traffic scenes. In: Proc. of the 2003 Int’l Conference on Multimedia,
vol. 2, pp. 657—-660, 2003



REFERENCE 39

[23] Stauffer,C., Tieu, K.: Automated multi-camera planar tracking correspondence
modeling. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 259—266, 2003

[24] Black, J., Ellis, T., Rosin, P.: Multi view image surveillance and tracking. In:
Proc. IEEE Workshop on Motion and Video Computing, pp. 169—174, 2002

[25] Kim, K., Davis, L.: Multi-camera tracking and segmentation of occluded peo-
ple on ground plane using search-guided particle filtering. In: Proc. European
Conference on Computer Vision, vol. 3, pp. 98—109, 2006

[26] Reddy, D., Sankaranarayanan, A., Cevher, V., Chellappa, R.: Compressed sens-
ing for multi-view tracking and 3-D voxel reconstruction. In: Proc. IEEE Int’l
Conference on Image Processing, pp. 221—224, 2008

[27] Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multicamera people tracking with
a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2),
267—-282, 2008

[28] Alahi, A., Jacques, L., Boursier, Y. et al. Sparsity Driven People Localization
with a Heterogeneous Network of Cameras. J Math Imaging Vis 41, 39-58 (2011).
https://doi.org/10.1007/s10851-010-0258-7

[29] He, Kaiming, et al. "Maskr-cnn.” Proceedings of the IEEE international confer-
ence on computer vision. 2017.



)

ul

Appendix A

C# code

A.1 RespawnController

using System ;

using System.Collections;
3| using System.Collections.Generic;
using UnityEngine ;

publicclassrespawn Controller : MonoBehaviour

{

~

public int humanNum total ;
9 publicint humanNum inScene;
// Changethe areasize

11 public float largestX;
public float smallestX;
public float largestZ;
public float smallestZ;

private ArrayList humanList=new ArrayList(); //listofIDofhuman,
startsfrom zero

17 private Array List objectList=new Array List ();

private Array List r human List ; //1ist o fthe random IDs o f human

19 //private ArrayList rSpawn List ; 1listofthe random spawn point

//private ArraylList r_x;

21 //private ArraylList r_z;

privateintSpawnCounter =0 ;

voidStart()

{

N

for(inti=o0;i< humanNum total ;i++)

40




N
~

9

43

49

wl
ul

ul
~

61

63

65

APPENDIX A. C# CODE

41

humanList . Add(i);

// Updateiscalledonce per frame
void Update ()

{

if (Input . GetKeyDown( KeyCode . Space ))

{

if(SpawnCounter == 0)

{
SpawnCounter++;
}
else
{
foreach(GameObject Object in objectList)
{
Destroy ( Object);
}
}

rhuman List = Randoms ( 0, humanNum total , humanNum inScene ) ;
// r x = Randoms( smallest X, largest X , humanNum inScene ) ;
//r_z = Randoms(smallestZ, largestZ, humanNum inScene);
for(inti=o0;i< humanNum inScene ; i ++)
{
GameObject humanPrefab = Resources .
Load <GameObject >(r human List [i ]. ToString () ) ;
float X = UnityEngine .Random.Range (smallestX , largestX);
float Z = UnityEngine .Random. Range (smallestZ , largestZ);
Vector 3 Spawn Position =new Vector 3(X, 0,7Z);
GameObject human = Instantiate (humanPrefab ,
Spawn Position , UnityEngine . Random .rotation);
objectList .Add(human) ;
}
/*
r human List=RandomNum( humanList ) ;
rSpawn List = RandomList () ;
for(inti=o0;i <humanNum inScene ;i ++)
{
GameObjecttestPrefab = Resources.Load <GameObject >(r
human List[i] . To String () ) ;




69

~
[9)]

~
~

81

89

91

93

95

99

101

103

105

107

APPENDIX A. C# CODE 42

GameObject human = Instantiate(testPrefab, (Vector3)
rSpawn List [i], Unity Engine . Random .rotation);
objectList.Add( human);

}
*/
}
}
publicArray List Randoms(intbegin,intend,intnum)
{
Array List random = new Array List () ;
/*
System .Random rnd =new System .Random( Guid .NewGuid () . GetHashCode
0);
for(inti=o0;i< humanNum inScene ;i++)
{
random .Add(rnd . Next (begin , end));
}
retur n (random ) ;
*/
while (random . Count< num)
{
int i=UnityEngine .Random. Range (begin ,end);
if (!random . Contains (1))
{
random . Add(1i);
}
}
r etur n random ;
}
/*
public Array List RandomNum(Array List list)
{

intresultID;

Array List result=new Array List ();
ArrayList listClone = new ArrayList ();
foreach(int numin list)

{
listClone.Add(num) ;




109

111

119

129

131

APPENDIX A. C# CODE 43

while (1istClone.Count > list.Count - humanNum inScene )

{
resultID= Unity Engine .Random.Range (0, listClone.Count);
result.Add(listClone[resultID]);
listClone.RemoveAt(resultID);

return(result);

publicArray List RandomList ()
{
int x;
int z;
Array List SpawnList = new Array List () ; while
( SpawnlList . Count < humanNum inScene ) _
{
x = UnityEngine .Random.Range (smallestX , largestX);
z = UnityEngine .Random. Range (smallestZ , largestZ);
Vector 3 Spawn Position = new Vector 3 (x,0,z);
if (!SpawnList. Contains ( Spawn Position ) )

{
SpawnList . Add( Spawn Position ) ;

}

r etur n SpawnList ;
b/
}

RespawnController

A.2 Test navigator

~

using System.Collections;

using System.Collections. Generic;
using UnityEngine ;

using UnityEngine . Al ;

using System.IO;

using System . Text ;




O

19

N
ul

N
~

43

APPENDIX A. C# CODE 44

{

publicclasstestNavigator: MonoBehaviour

// Start is called before the first frame update
private NavMeshAgent nav ;

private Animator animator ;
float smallestX;
float largestX;

float smallestZ;

float largestZ;

void Start()

{

nav = GetComponent <NavMeshAgent >() ;
animator = GetComponent<Animator >() ;
Invoke Repeating ("random Position”, 2, 2 + Random.Range(of,2f));
respawn Controller Spawn Controller = GameObject . Find (”
Spawn Controller ”) . GetComponent <respawn Controller >() ;
smallestX = Spawn Controller .smallestX;
largestX = Spawn Controller .largestX;
smallestZ = SpawnController . smallestZ;
largestZ = Spawn Controller . largestZ;

// Updateiscalledonce per frame
void Update ()

int velocity = Animator . StringToHash (”Velocity ) ;
if(transform.position.x==nav.destination.x&&transform.position
.z==nav.destination.z)

{

// Debug . Log (" Stooooop ! 7 ) ;

nav .is Stopped =true;

// animator . Set Bool (”is Walking ” ,false);
}

animator . Set Float (velocity,nav.velocity.magnitude);
if (!nav.isStopped)
{

/+* Unabletorotatetothe correct angle




49

61

69

79

81

83

APPENDIX A. C# CODE 45

* probably because of misunderstanding of quaternion
functions
*
introtation = Animator. StringToHash ( ” Rotation ") ;
float rotateAngle = Quaternion .LookRotation (nav.destination
- transform . position).eulerAngles.y - transform .rotation
.eulerAngles.y;
if(rotate Angle > 180)

{
rotate Angle = 360 - rotate Angle ;
}
elseif(rotate Angle < -180)
{
rotate Angle = -360 - rotate Angle ;
}
floatr=rotate Anglex(1.0f/180.0f);
*/

// Debug . Log (r);
// animator . Set Float (rotation,r);
transform .rotation = Quaternion . RotateTowards (transform .
rotation , Quaternion . LookRotation (nav. destination -
transform . position), 2);
// animator . Set Float (rotation,0);

}
if (Input . GetKeyDown( KeyCode .A) )
{
Debug . Log (”(” +transform .position.x +”,”+ transform .
position.y+”,” + transform . position.z + 7)”);
groundTruth () ;
}

void random Position ()

{

floaty=transform.position.y;
float x = Random.Range (smallestX , largestX);
float z = Random.Range (smallestZ , largestZ);




87

89

91

97

99

101

103

105

107

109

111

119

APPENDIX A. C# CODE

/*

introtation = Animator . StringToHash ( ” Rotation ") ;

Vector 3forward Dir =nav.destination-transform .position;

Quaternion lookAtRot = Quaternion . Look Rotation (forward Dir );

Vector 3resultEuler=1ookAtRot .eulerAngles;

float rotate Angle = resultEuler.y - transform .rotation.
eulerAngles.y;

if (rotate Angle > 180)

{
rotate Angle =360 - rotate Angle ;
}
elseif(rotate Angle < -180)
{
rotate Angle = -360 - rotate Angle ;
}

floatr=rotate Angle*(1.0f/180.0f);

*/

// while (transform . rotation!= Quaternion .LookRotation (nav.
destination - transform . position))

/A

// animator . SetFloat (rotation, r);
//}

// animator . Set Float (rotation,0);
nav.destination = new Vector3(x,y,z);
nav.is Stopped =false;

// Debug . Log ( rotate Angle ) ;
// animator . Set Bool ( ”is Walking ”, true ) ;

//transform . LookAt(nav. destination);

// transform . r o t a ti o n=Quaternion . RotateTowards ( transform .rotation
, Quaternion . LookRotation (nav.destination- transform .
position) ,3);

// Debug . Log (” walking !'!!”);

publicvoid groundTruth ()

{

File.AppendAllText ("F: \ \ACADEMIC FILES\\SURF\\ GroundTruth\\ Test.
txt”,” (” +transform.position.x+”,” + transform.position
.y+7,” +transform.position.z+”)”+”\ r\n”, Encoding .

Default ) ;

46




APPENDIX A. C# CODE

47

Test navigator



N

N

o)}

]

1

)]

-
oo

[S)
o

N
N

Appendix B

Matlab code

B.1 Tsai’s calibration

%Verifytransitionfromworldcoordinates

%camera parameters

Ncx=576;

Nfx=576;

dx=0.023;

dy=0.023;

SX =1;

%leftworldcoordinate

subplot (1,2,1);

CreateWorld ;

%rightimagecoordinate

subplot (1,2,2);

I=imread ('View/cam1 1.jpg ’);imagesc (I);
hold on ;

Cx=size(I,2)/2;

Cy=size (I,1) /2;

hold on ;

%calculate Tsai’s model parameter
L=load (’Tsai Input / Pic Point 1.txt ’);
LW=load (’Tsai Input / WorldPoint1 .txt’);
Xf=L(:,1);

Yf=L(:,2);

xw=LW(: ,1);

yw=LW(: ,2);

[M,N]=size (LW);

zw=zeros(M,1);

48

to image coordinates




28

30

32

APPENDIX B. MATLAB CODE

[R, T, f,k1]="Tsai (Xf,Yf,xw,yw,zw, Nex, Nfx,dx,dy, Cx,Cy,sx );

csvwrite ('TsaiResult /R 1.txt *,R);
csvwrite (' TsaiResult /T_1.txt *,T);
csvwrite (’TsaiResult /f 1.txt’,f);

safcsvwrite (' Tsai Result / k11 .txt’,k1);

s6|%verify correctness

38

n=2500 ;
figer = 1;
fori=1:n

sosubplot (1,2,1);

title('clickonapoint!here!’);

42|%Cl i ¢ k on a point in the world frame and mark i t in red

44

% 9%
%interval _ X = 20.8;
%interval .Y = 20.8;

sw6[Xw=inte rval X «(mod(i-1,50));

4

oo

5

[}

52

54

5

)]

58

6!

N

%Yw=intervalY=«floor((i-1)/50);

q =ginput (1);

hold on ;

plot(q(1),q(2),’rp’, ' markersize *,10);

Xw=q(1) ;

Yw=q(2);

Zw = 17 0; %This is the height of the point in the clicked world
coordinate system , -100 is 100 unitson the ground

% 9%

%The image coordinates corresponding to p oin tsin the world coordin ate system

[ xf,yf]l=pic(Xw, Yw, Zw, f,dx,dy,Cx,Cy,R,T);

%The image coordinates of points on the earth plane corresponding to
points in the world coordinate system

[xff,yff]l=pic(Xw,Yw,0,f,dx,dy,Cx,Cy,R,T);

%Mark verification points in the image coordinate system and the lines

ofcorresponding points and two points onthe ground plane

cosubplot (1,2,2);

holdall;
plot(xf,yf, "bp’, markersize ’ ,10);
plot (xff,yff,’yp’, markersize ,10);

cefline ([xff,xf], [yff,yf]);

%Save the world coordinates of the verification point , the image
coordinates ofthe corresponding point , and the image coordinates of

49




66

68

70

72

80

8

N

8

>

86

88

90

92

94

96

9

[e3)

102

10

=

APPENDIX B. MATLAB CODE

the corresponding point on the ground plane

if(figer==1)

fil1= fopen (’CalibrationResult/Calibration World . txt *, 'w’) ; %Verify the
world coordinates of the point

fprintf(fil1,’ %5.6 f’ Xw);

fprintf(fil1,’’);

fprintf(fil1, %5.6f° ,Yw);

fprintf(fil1, \n’);

fclose(fil1);

fil2 = fopen (’CalibrationResult/CalibrationPic.txt’,’w’); %The graph
coordinates of the corresponding points

fprintf(filze, %5.6f,xf);

fprintf(fil2,’’);

fprintf(filze, %5.6f ,yf);

fprintf(fil2 , \n’);

fclose(fil2);

filg=fopen ('CalibrationResult/ Calibration Pic Ground . txt’,’w’); %The
image coordinates o fthe corresponding ground plane points

fprintf(filg , %5.6f°,xff);

fprintf(filg,’’);

fprintf(filg , %5.6f ,yff);

fprintf(filg, \n’);

fclose(fil3);

figer=figer+y;

else

fil1 = fopen (’CalibrationResult/Calibration World .txt ’,’a’);
fprintf(fil1, %5.6f° Xw);

fprintf(fil1,’’);

fprintf(fil1,’ %5.6 1 ,Yw);

fprintf (fil1, \n’");

fclose (fil1);

fil2 = fopen (’CalibrationResult/CalibrationPic.txt’,’a’);
fprintf(filz2, %5.6f°,xf);

fprintf(filz,’’);

fprintf(file, %5.61,yf);

fprintf(fil2 ,’ \n’);

fclose (fil2);

filg=fopen(’CalibrationResult/ Calibration Pic Ground .txt’,’a’);

50




106

108

110

APPENDIX B. MATLAB CODE

fprintf(filg ,” %5.6f",xff);
fprintf(filg ,’ ’);
fprintf(filg ,” %5.6f",yff);
fprintf(fil3 ;" \n’);
tclose(t113);

end

end

51

Tsai’s calibration




w

~

19

Appendix C

Python code

C.1 JOL algorithm

import os

from PIL import Image

import shutil

import matplotlib. patches as patches
import matplotlib.pyplotasplt
import numpy as np

import cv2 ascv

groundi.file_path = ’./savedpoints /Ground1. txt’
groundafile.path = ’./savedpoints /Ground2. txt’
groundg. file.path = ’./savedpoints /Ground3. txt’
ground4_file.path = ’./savedpoints /Ground4. txt’
heighti_file_path = ’./savedpoints /Height1 . txt’
heighta_filepath = ’./savedpoints /Height2 . txt’
heightg_filepath = ’./savedpoints /Height3 . txt’
heightg4_file_path = ’./savedpoints /Height4 . txt’

image1file_path ’./img _out2 /cami1.png’

image2_file_path ’./img out2 /cam2.png’
images_file_path = ’./img out2 /cam3.png’

imageq.file path = ’./img out2 /cam4.png’

imageirec _file_path = ’./images_rec/cam1.jpg’
»s|image2_rec_file_path = ’./images_rec/cam2.jpg’

imageg3.rec_file_path = ’./images _rec/cam3.jpg’

imageg4_rec file path =’./images rec/camg4.jpg’

52




29

w
~

w
O

41

49

51

53

57

59

61

63

APPENDIX C. PYTHON CODE

image 1save path =’./img out3 /cami1 .png’
image2 save.path = ’./img out3/cam2.png’
image 3save path =’./img out3 /cam3 .png’

image 4 save path = ’./img out3 /cam4 . png ’

ground1 = []
ssground2 =1 ]
grounds =[]
lground4 =[]
solheight 1=[]
height 2 = []
height 3=[]
height 4 = []

with open (groundifilepath, r’)asfiletoread:

siwhile True :

lines=filetoread.readline()
ifnotlines:
break
xtmp, y_tmp = [ float (i) for i in lines.split ()] #If the
separatorisa space, no arguments are passed in parentheses
.Ifitisacomma,the’,’characterispassed .
ground1 . append ([int(xtmp),int(ytmp)]) # Adds newly read data
pass
ground1 = np . array ( ground1 ) # Adds newly read data
ground1 = groundi.reshape ((50,50,2))
pass

withopen(groundafilepath,’r’)asfiletoread:
while True :
lines=filetoread.readline()
ifnotlines:
break
xtmp, y_tmp = [ float (i) for i in lines.split ()] #If the
separatorisa space, no arguments are passed in parentheses
.Ifitisacomma,the’,’characterispassed .
ground2 . append ([int(xtmp),int(ytmp)]) # Adds newly read data
pass
ground2 = np . array ( ground2 ) #
listarray

ground2 = ground2.reshape ((50,50,2))

53




67

69

79

81

83

85

91

93

95

APPENDIX C. PYTHON CODE

pass

withopen(groundgfilepath,’ r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
xtmp, y_.tmp = [ float (i) for i in lines.split ()] #If the
separatorisa space, no arguments are passed in parentheses
.Ifitisacomma,the’,’characte rispassed .
ground3 . append ([int(xtmp),int(ytmp)]) # Adds newly read data
pass
ground3 = np . array ( ground3 ) #
listarray
ground3 = grounds.reshape ((50,50,2))
pass

withopen(groundg4filepath,’r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
ximp ,ytmp =[float(i)foriinlines.split()]#

>

ground4 .append ([int(xtmp), int(ystmp)]) #

pass
ground4 = np . array ( groundq ) #

listarray
ground4 = ground4.reshape ((50,50,2))
pass

withopen (heightifilepath,’ r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
pass
ximp,ytmp=[float(i)foriinlines.split()]#

54




99

101

103

105

107

109

111

119

129

APPENDIX C. PYTHON CODE

height1.append ([int(x.tmp), int(ytmp)]) #

pass

height1 =np.array (height1) #
listarray

height 1 = height 1. reshape ((50,50,2))

pass

with open (height2afilepath,’ r’)asfiletoread.:
while True :
lines = file to read.readline() #
ifnotlines:
break
pass
ximp ,ytmp =[float(i)foriinlines.split()]#

>

height2.append ([int(xtmp), int(ytmp)]) #

pass
height 2 = np . array ( height 2 ) #

listarray
height2 = height2.reshape ((50,50,2))
pass

withopen (heightgfilepath, r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
pass
xtmp,ytmp=[float(i)foriinlines.split()]#

>

height3.append ([int(xtmp), int(yimp)]) #

pass

height3 =np.array (height3g) #
listarray

height 3 = height 3 . reshape ((50,50,2))

pass

withopen (heightgfilepath, r’)asfiletoread:.

55




139

141

143

149

—
)]
o

ul
]

159

161

163

165

167

169

APPENDIX C. PYTHON CODE

while True :
lines = file to read.readline() #
ifnotlines:
break
pass
ximp ,ytmp =[float(i)foriinlines.split()]#

>

height 4 .append ([int(xtmp), int(ytmp)]) #

pass
height 4 = np . array ( height 4 ) #

listarray
height4 = height4.reshape ((50,50,2))
pass

img1 =cv.imread (imageifilepath,o0)

sfimg1 = np . copy (img1)

img_rec 1=cv.imread (imageirecfilepath)

7[img rec 1 = np . copy ( img rec 1)

img2 =cv.imread (image2filepath,o0)
img2 =np . copy (img2 )

imgrec2=cv.imread (image2recfilepath)
#img rec 2 = np . copy (img rec 2)

img3 =cv.imread (imagegfilepath,o0)

sfimg3 = np . copy (img3)

img_rec 3=cv.imread (images3recfilepath)
#img rec 3 = np . copy (img rec 3)

imgg4 =cv.imread (imageg4filepath,o0)
img4 =np . copy (img4 )

imgrec4 =cv.imread (imageg4recfilepath)
#img rec 4 = np . copy (img rec 4 )

posi=[]

59

#calculate the rectangular in width

# for i in range (groundi .shape[o0]):

# forjin range (groundi .shape [1]-3):
# left_.down1 = ground1[i,j]

# left_down2 = ground2[i,j]

56




171

173

175

177

179

181

183

185

187

189

191

193]

195

197

199

201

203

APPENDIX C. PYTHON CODE

# ¥ H H

* O # H B

# W oH W

left_down3 = grounds[i,j]
left_downg4 = ground4[i,j]

right_.up1 = heighti1[i, j+3]

right up2 = height 2[1,j+3]
right ups = height 3[1i,j+3]
right up4 = height 4[1i,j+3]
cnt1 = 0
cnt 2= 0;
cnt 3 =0
cnt 4 = 0;

size1 = abs ((rightupi1[o] — leftdown1[0]) *(right up1[1]

leftdowni1[1]))

size2 = abs ((right up2[0] - leftdawn2[0]) * (right up2[1]

leftdown2[1]))

size3 = abs ((rightup3[0] - leftdawn3[0]) * (rightup3l1]

left downg[1]))

size4 = abs ((right upg4 [0] — left dawng4 [0]) * (right up4[1]

leftdowng [1]))

for x in range (min(left downi[o], right upi[o]),
max(left downi1[o], rightup1[o0])):

for y in range (min(left down1[1], right up1[1]),

(leftdowni[1], rightup1[1])):
ifimgi[y,x]> o:
cnti1+=1
portion1 = cnt1/size1

for x in range (min(left down2[o0], right up2[o]),
max(left down2[0], rightup2[0])):

57

max

for y in range (min(left_ down2[1], right up2[1]), max

(leftdownz2([1], rightup2[1])):
ifimga [y,x] > 2:
cnt2+=1
ifsize2!=o0:
portion2 =cnt2/size2

for x in range (min(left downg[o], right upsg[o]),
max(left down3[o0], rightup3[o0])):




205

207

209

211

213

215

217

219

221

223

225

227

229

N

233

235

237

239

APPENDIX C. PYTHON CODE

def checkposi(posii, posi2, posig, posig):
posi=o0
if(posii<o.1):
posi=pow(posi2*posig*posig,1/3)
if(posi2<o0.1):

# for y in range (min(left_ down3[1], right up3g[1]), m
(leftdowns [1], rightup3[1])):
# ify<108o0:
# ifimg3 [y,x]> 2:
# cnt3+=1
# ifsize3!=o0:
# portion3 =cnt3/sizes
# for x in range (min(left downg4[o0], right up4[o]),
max(left down4[o0], rightup4[o0])):
# for y in range (min(left_.downg4[1], right up4[1]), m
(leftdowng [1], rightup4[1])):
# ifimggq [y,x] > 2:
# cnt4+=1
# ifsize4!=o0:
# portiong = cnt4/size4
# if portion1 > 0.6:
# cv.rectangle(img._rec1, tuple(leftdown1), tuple
(rightup1),(128,128,128),1)
# if pow( portioni*portion2«portiong=*portion4, 1/4) > 0.3:
# posi.append ([i,j])
# cv.rectangle(img_rec1, tuple(leftdown1), tuple
(rightup1),(128,128,128),1)
# cv.rectangle(img_rec2, tuple(left down2), tuple
(rightup2), (128,128,128),1)
# cv.rectangle(img_rec3, tuple(left down3), tuple
(rightups), (128,128,128),1)
# cv.rectangle(img_rec4, tuple(left downg), tuple
(rightup4),(128,128,128),1)
cor path="./ cor / cor . txt’
pos1 =[]
b1pos 2 =]
pos 3 =[]
pos 4 =[]

58

ax

ax




APPENDIX C. PYTHON CODE

posi=pow(posili*posi3*posig,1/3)
if(posig<o.1):

posi=pow(posi2xposi1*posig,1/3)
if(posig<o0.1):

posi=pow(posi2+posig*posi1i,1/3)
return posi

se7fforiinrange (50):

IS
3

249

N
wul
~l

259

261

263

265

269

N
N

N
~

forjinrange (50):
pointgi=groundi [i,j]
point h1=height 1[i,j]
point.height1 = abs(pointgi[1] - point hi[1])
point_width 1=0.35 *pointheight1
pointgil=int(ground1[i,j][0o] - point width 1/2)
pointgir=int(ground1 [i,j][ 0]+ point width 1/2)

point_g2 = ground2[i,]]

point_h2 = height 2[1,j ]

pointheight2=abs (pointg2[1]-point h2[1])
point_width2 = 0.35 * point height2

point_g2_1 = int(ground2[i,j][o] - point width2/2)
point_g2_r = int(ground2[i,j][o] + point width2/2)

pointg3 =ground3 [i,j]

point h 3 =height 3[1,]j]

pointheight3 = abs(pointg3[1] - point h3[1])
pointwidth3=0.35*pointheights

pointg3l = int(ground3[i,j][o] - point widthg3/2)
pointg3r=int(ground3[i,j][o] + point width3/2)

point_g4 = ground4[i,j]

point_h 4 = height 4[1i,]j ]

pointheightg=abs (pointg4[1]-point hg4[1])
point_width4 = 0.35 * point heightg

point_g4_1 = int(ground4[i,j][o] - point widthg4/2)
point_g4_r = int(ground4 [i,j][o] + point widthg4/2)

cnt1 =
cnt 2

cnt 3
cnt 4

oS O © O

59




N
0
N

289

291

299

301

303

305

307

309

319

APPENDIX C. PYTHON CODE

[11))

(1))

(11))

(11))

start_p1 = [point_g1 1, min(point_g1[1], pointh1 [1])]
endp1=[point.gir, max(pointgi1[1], pointh1 [1])]

start_p2 = [point_g2 1, min(point _g2[1], pointh2 [1])]
end_p2 = [point_g2_r, max(point_g2[1], pointh2 [1])]

start_p3 = [point g3 1, min(point g3[1], pointhg [1])]
end_p3 = [point_g3_.r, max(point_g3[1], pointhg [1])]

start_p4 = [point g4 1, min(point g4[1], pointhg [1])]
end_p4 = [point_g4_r, max(point_g4[1], pointhg [1])]

size1 = abs ((point g1 1-point g1 r)=*(point_gi1[1] - point_h1

size2 = abs ((point g2 1-point g2 r)=*(point g2[1] - point _h2

size3 = abs ((point €3 1-point g3 t)*(point g3[1] - point-h3

size4 = abs ((point g4 l-point g4 r)=(pointg4{1] - point hg -

forxin range (int(startpia[o]),int(endp1[0])):
for y in range (int(start pi1[1]), int(end p1[1])):
ify <1080 and x <1920:
if imgi[y,x] > o:
cnt 1+=1
portion1 = cnt1/size1
forxin range (int(startp2[o]),int(end p2[0])):
for y in range (int(start p2[1]), int(end p2[1])):
ify <1080 and x <1920:
if img2[y,x]>o0:
cnt 2+=1
portion2 = cnt2/size2
forxin range (int(startp3[o]),int(endp3[0])):
for y in range (int(start p3[1]), int(end p3[1])):
ify <1080 and x <1920:
if img3[y,x]> o:
cnt 3+=1
portiong = cnt3/sizes

forx in range (int(startp4[o]),int(end p4[0])):

60




323

325

327

329

331

335

337

339

341

343

345

347

349

351

353

APPENDIX C. PYTHON CODE 61

foryinrange (int(startp4[1]),int(endp4[1])):
if y <1080 and x <1920:
if img4[y,x]> o:

cnt4+=1
portiong=cnt4/size4
#print(portion
4)"""

if portiong > 0.4:

cv.rectangle(img_rec4, tuple(start p4), tuple(end p4),

(128,128 ,128 ), 1)

if(portioni< 0.1):

(endp2),(128

(end p3),(128

(endp4),(128

str(portion)

elif (

portion = pow(portion2x*portiong=*portiong4, 1/3)
ifportion>o0.4:
cv.rectangle(img_rec2, tuple(start p2), tuple
,128 ,128 ), 1)
cv.rectangle(img_rec3, tuple(start p3), tuple

,128 ,128 ), 1)

cv.rectangle (img_rec4 , tuple(start pg), tuple
,128 ,128 ), 1)
with open ( cor path, ”a”) asf:

9 9 9 9

f.writelines(str(i)+ +str(j) + +

+”\nas)

portion2 < 0.1):
portion=pow(portioni*portion3=*portiong,1/3)
if portion > 0.3:
cv.rectangle (img_rec1, tuple(start p1), tuple

(endp1),(128 ,128,128 ), 1)

(end p3),(128

(endp4),(128

cv.rectangle(img_rec3, tuple(start p3), tuple

,128 ,128 ), 1)

cv.rectangle (img_rec4 , tuple(start pg), tuple
,128 ,128 ), 1)
with open (cor path ,”a ”) as f:

9 % 2 9

f.writelines(str(i)+”"+str(j)+""+

str(portion)+”\n”)

elif(

(endp2),(128

portion3< 0.1):
portion = pow(portioni*portion2xportiong, 1/3)
ifportion>o0.4:

cv.rectangle (img_rec2, tuple(start p2), tuple
,128 ,128 ), 1)




355

359

361

363

365

367

369

371

373

375

377

381

APPENDIX C. PYTHON CODE 62

cv.rectangle (img_rec1, tuple(start p1), tuple
(endp1),(128 ,128,128 ), 1)

cv.rectangle(img_rec4 , tuple(start pg), tuple
(endp4),(128,128 ,128 ), 1)

with open ( cor path, ”a”) as f:

9”9 9 9

f.writelines(str(i)+ +str(j) + +

str(portion) +”\n”)

elif (portiong < 0.1):
portion=pow(portioni*portion3=*portion2,1/3)
if portion > 0.2:

cv.rectangle(img_rec1, tuple(start p1), tuple
(endp1),(128 ,128 ,128 ), 1)

cv.rectangle (img_rec2, tuple(start p2), tuple
(endp2),(128,128,128 ), 1)

cv.rectangle(img_rec3, tuple(start p3), tuple
(endp3),(128,128,128 ), 1)

with open (cor path ,”a”) as f:

9 %

f.writelines(str(i)+”7+str(j)+”7+

str(portion)+”\n”)

else:
portion = pow(portioni*portiong*portion2xportion4,
1/4)
ifportion> 0.4:
cv.rectangle(img_rec1, tuple(start p1), tuple
(endp1),(128 ,128 ,128 ), 1)
cv.rectangle(img_rec2, tuple(start p2), tuple
(endp2),(128,128 ,128 ), 1)
cv.rectangle(img_rec3, tuple(start p3), tuple
(endp3),(128,128 ,128 ), 1)
cv.rectangle (img_rec4, tuple(start pg), tuple
(endp4),(128 ,128 ,128 ), 1)
with open (cor path ,”a ”) as f:

9 % 2 9

f.writelines(str(i)+”7+str(j)+""+

str(portion)+”\n”)

portion = pow(portioni*portion3*portion2*portion4, 1/4)
ifportion>o0.5:
cv.rectangle (img_rec1, tuple(start p1), tuple(end p1),
(128 ,128 ,128 ), 1)
cv.rectangle(img _rec2, tuple(start p2), tuple(end p2),
(128,128,128 ), 1)




APPENDIX C. PYTHON CODE 63

w
oo
w

387

391

w
O
w

395

397

399

401

403 | ev
Ccv
405 [ ev

Ccv

cv.rectangle(img_rec3, tuple(start p3), tuple(end p3),
(128, 128, 128), 1)

cv.rectangle(img_rec4, tuple(start p4), tuple(end p4),
(128 ,128 ,128 ), 1)

with open ( cor path, ”a” ) asf:

f.writelines(str(i)+”""+str(j)+""+str(

portion)+”\n")

#ifportion>0.35:

# with open (cor path ,”a”) as f:

# f.writelines(str(i)+”” + str(j) + 7”7 +str
(portion) +”\n”)

# posi.append ([i,j, portion])

# posi.append ([ start.p1, end_p1, portion])

# pos2.append ([ start p2 ,end_p2,portion])

# pos3.append ([ start p3,end_p3, portion])

# pos4.append ([ start_p4, end _p4, portion])

# cv.rectangle(img_-rec1, tuple(start.p1), tuple(end-p1
), (128,128, 128),1)

# cv.rectangle(img_rec2, tuple(start_.p2), tuple(endp2
), (128,128, 128),1)

# cv.rectangle(img_rec3, tuple(start.p3), tuple(endp3
), (128,128, 128),1)

# cv.rectangle(img_rec4, tuple(start_.pg4), tuple(endp4

), (128,128, 128),1)

.imwrite (image 1 save path , img rec 1)
.imwrite (image 2 save path ,img rec2)
.imwrite (image 3 save path ,img rec3)
.imwrite (image 4 save path , imgrec4)

JOL algorithm

C.2 RSS algorithm

import os

o| from PIL import Image

importshutil

4| from cv2 importsort



00

10

16

N

26

36

44

APPENDIX C. PYTHON CODE

import matplotlib. patches as patches
import matplotlib.pyplot asplt
import numpy as np

import cv2 ascv

import random

def randomcolor () :
cOlOrArr:[’1,,,2’,’3’,’4,,,5,,,6’,’7’,,8’,
9’,’A9,9B9,9C9,9D9,9E9,’F’]

9999

5

color=
foriin range (6):

color+=colorArr[random.randint (0,14 )]
return “#”+color

def random colour () :
r etur n random . randint (0,255 ), random . randint (0,2 55 ), random . randint

(0,255)
image1_file.path = ’./images_rec/cami.jpg’
bimage2_file. path = ’./images_rec/cam2.jpg’
imageg file path = ’./imagesrec/cam3.jpg’
image4_file. path = ’./images_rec/cam4.jpg’
image 1save path =’./img out4 /cam1.png’
image2 save_path = ’./img out4 /cam2.png’

sfimage 3save path =’./img out4 /cam3 .png’

image 4 save path = ’./img aut4 /cam4 .png ’
posipath="./cor/cor2.txt’

posi=[]
ground1l =

ground2 =
grounds

— /s /o
[y T N R '

ground4 =

height1 =
height2 =
heightg =
height 4

—
_

groundifilepath="./savedpoints/Ground1.txt’

64




4

()]

48

o

5

ul
N

54

56

60

62

64

66

68

80

APPENDIX C. PYTHON CODE

ground2 file path = ’./savedpoints /Groundz2. txt’
ground3s_file_path = ’./savedpoints /Grounds. txt’
ground4_file_path = ’./savedpoints /Ground4 . txt’

height1 file path = ./savedpoints /Height1 . txt’
heighta_file_path = ’./savedpoints /Height2 . txt

s

solheightg file path = ’./savedpoints /Height3 . txt’

s

heightg_file_path

./savedpoints /Height4 . txt
radius=4

with open (groundifilepath, r’)asfiletoread:
while True :
lines=filetoread.readline()#
ifnotlines:
break
ximp ,ytmp =[float(i)foriinlines.split()]#

>

groundi.append ([int(x.tmp), int(yimp)]) #

pass
ground1 = np . array ( ground1 ) #

listarray
ground1 = groundi.reshape ((50,50,2))
pass

withopen(groundafilepath,’r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
ximp ,ytmp =[float(i)foriinlines.split()]#

>

ground2 .append ([ int(xtmp), int(y_tmp)]) #

pass
ground2 = np . array ( ground2 ) #

listarray
ground2 = ground2.reshape ((50,50,2))
pass

65




84

86

88

90

96

98

100

102

104

106

108

110

APPENDIX C. PYTHON CODE 66

withopen(groundgfilepath,’ r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
ximp ,ytmp =[float(i)foriinlines.split()]#

>

grounds .append ([int(xtmp), int(ytmp)]) #

pass
ground3 = np . array ( ground3 ) #

listarray
ground3 = ground3.reshape ((50,50,2))

pass

withopen(groundg4filepath,’ r’ )asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
xitmp ,ytmp =[float(i)foriinlines.split()]#

>

ground4 .append ([int(xtmp), int(ytmp)]) #

pass
ground4 = np . array ( groundq ) #

listarray
ground4 = ground4.reshape ((50,50,2))
pass

withopen (heightifilepath,’ r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
pass
ximp,ytmp=[float(i)foriinlines.split()]#

>

height1.append ([int(x.tmp), int(ytmp)]) #




114

116

11

0

126

136

140

142

144

146

APPENDIX C. PYTHON CODE

pass

height1 =np.array (height1) #
listarray

height 1 = height 1. reshape ((50,50,2))

pass

with open (height2afilepath, r’)asfiletoread.:
while True :
lines = file to read.readline() #
ifnotlines:
break
pass
xtmp ,ytmp =[float(i)foriinlines.split()]#

>

height2.append ([int(xtmp), int(yimp)]) #

pass
height 2 = np . array ( height 2 ) #

listarray
height2 = height2.reshape ((50,50,2))
pass

withopen(heightgfilepath, r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
pass
ximp,ytmp=[float(i)foriinlines.split()]#

>

height3.append ([int(xtmp), int(ytmp)]) #

pass

height3 =np.array (height3) #
listarray

height 3 = height 3 . reshape ((50,50,2))

pass

with open (height4filepath,’r’)asfiletoread.:
while True :
lines = file to read .readline () #

67




148

150

156

160

162

164

166

168

174

176

180

APPENDIX C. PYTHON CODE

ifnot lines:
break
pass
xtmp ,ytmp =[float(i)foriinlines.split()]#

>

height4.append ([int(xtmp), int(yimp)]) #

pass
height 4 = np . array ( height 4 ) #

listarray
height4 = height4.reshape ((50,50,2))
pass

with open ( posipath,’r’)asfiletoread:
while True :
lines=filetoread.readline() #
ifnotlines:
break
pass
ximp,ytmp,positemp=[float(i)foriinlines.split()]

>

posi.append ([int(x.tmp), int(yimp), posi _temp ])

pass
#posi=np.array (posi)#

listarray
pass

img1 =cv.imread (imageifilepath)
img1 = np.copy (img1)

olimg2 = cv.imread (image2 file path)

img2 =np . copy (img2)
img3 =cv.imread (image3 file path)
img3 = np . copy (img3)
imgq =cv.imread (image4 file path)
img4 =np . copy (img4)

#posi = sorted (posi,key =lambda posi:posi[2], reverse=True)

68




184

186

188

190

192

194

196

198

200

204

206

208

210

N
N

APPENDIX C. PYTHON CODE

while len(posi)!=o0:
posi_-tmp = sorted(posi,key =lambda posi:posi[2], reverse=True)
#the tmplarget posibility
x_tmp, y tmp, postmp = positmp[o][0], positmp[o0][1], posiimp
[o][2]
i=o
whilei<len(posi):
x,y,pos=posi[i][o],posi[i][1],posi[i]l[2]
if ((x>=xtmp-radius and x<= x tmp+radius) and (y>=ytmp-
radius and y<=ytmp+radius)):
posi.remove(posi[i])
i-=1
i+=1

pointgi=ground1[positmp[o][o0],positmplo][1]]

point h1=height 1[positmp[o][o],positmp[o][1]]

pointheight1 = abs(pointgi[1] - point h1[1])

point_width1 = 0.35 * point height1

pointgil=int(groundi[positmp[o][o],positmplo][1]][0]-
point_width1/2)

pointgir=int(ground1[posi tmp [0][0],posi tmp[o][1]][0] +
point width1/2)

pointg2 = ground2 [posi tmp [0][0], posi tmp [0][1]]

point _h2 =height2[posi tmp[o][0], posi tmp[o][1]]

pointheight2 = abs (pointg2[1] - point h2[1])

pointwidth2=0.35*pointheight2

pointg2l=int(ground2 [positmp[o][0o],positmp[o][1]][0]-
point_width2/2)

pointg2r=int(ground2 [posi tmp[o][0],posi tmp [o][1]][0] +
point width2/2)

pointg3=ground3[positmp[o][o],positmp[o][1]]

point _h3 = height3[posi tmp[o0][0], posi tmp[o][1]]

pointheight3 = abs (pointgg[1] - point h3[1])

point_width3 = 0.35 * point height3

pointgs3l=int(ground3[positmp[o][o],positmp[o][1]][0]-
point_width3/2)

pointg3r=int(ground3 [posi tmp [o0][0],posi tmp[o][1]][0] +
point widthg /2)

pointg4 = ground4 [posi tmp [o][0], posi tmp [0][1]]
point _h4 =height4[posi tmp[o][0], posi tmp[o][1]]

69




APPENDIX C. PYTHON CODE

216 pointheightg=abs (pointg4[1]-pointhg4[1])
pointwidth4=0.35*pointheightyg
218 pointg4l=int(ground4 [positmp[o][o0], posi-tmp [0][1]][0] —

point-width4/2)
pointg4 r=int(ground4 [posi tmp [0][0], posi-tmp [0][1]][0] +
point widthg /2)

start-p1 = [point-g11, min(point-g1[1], point-h1  [1])]
endp1 =[point-giT, max(pointgi[1], pointh1  [1])]

start-p2 = [pointg2-1, min(pointg2[1], pointhz2 [1])]
end-p2 = [point-g2-r, max(point—gz2[1], pointth2 [1])]

start p3 = [point g3 1, min(pointg3[1], pointhg [1])]
end p3 = [point g3 r, max(point g3[1], pointh3 [1])]
o start p4 = [point g4 1, min(point g4 [1], pointhg [1])]
end p4 = [point g4 r, max(point g4[1], pointhg [1])]

N
w
N

color=random colour ()

36 cv.rectangle (img1, tuple(start: p1), tuple(end: p1), color, 1)
cv.rectangle(img2, tuple(start p2), tuple(end p2), color, 1)
38 cv.rectangle (img3, tuple(start p3), tuple(end p3), color, 1)
cv.rectangle (img4, tuple(start p4), tuple(end p4), color, 1)
240 print(positmp[o][o],positmp[0][1])

N
=
¥

2|cv . imwrite ( image 1 save path , img1 ) cv .
imwrite ( image 2 save path , img2 ) cv .
24 limwrite ( image 3 save path , img3 ) cv .
imwrite ( image 4 save path , img4 )

246

#print(posi[0])




	List of Acronyms
	List of Figures
	Contents
	1Introduction1
	2Methodology6
	3Results26

	Chapter 1 Introduction
	1.1Motivation, aims and objectives
	1.2Literature Review
	1.2.1Computer graphics in synthesized datasets
	(1)Advantages of synthesized datasets
	(2)Limitations of the existing synthesized datasets
	(3)Human character modelling

	1.2.2Computer vision in datasets verification
	(1)Homography in datasets calibration
	(2)Localization of foreground people


	1.3Industrial Relevance

	Chapter 2 Methodology
	2.1Synthesis of the datasets
	2.1.1Human character modeling
	(1)Software introduction
	(2)Assemble the initial body of the character
	(3)Customize the body’s shape and facial features
	(4)Dress the character using cloth library assets
	(5)Customize the texture and material of the body, ha
	(6)File saving
	(7)Skeleton binding of the characters
	(8)Unity import of the results
	(9)Animation binding of the characters
	(10)Human character Programming

	2.1.2Camera modeling
	2.1.3Scene Modeling

	2.2Verification of the datasets
	2.2.1Homography Transformation
	2.2.2Tsai’s calibration
	2.2.3Division of the ground truth into a grid of positi
	2.2.4Pedestrian detection in single view
	2.2.5Joint Occupancy Likelihood
	2.2.6Repulsive Spatial Sparsity (RSS)


	Chapter 3 Results
	3.1Pedestrian datasets sybthesis
	3.2Pedestrian photos in different orientations
	3.3The synthesized scenes
	3.4Homography validation of the figures
	3.5Masks extracted by using MaskRCNN
	3.6Tsai’s calibration result
	3.7JOL results
	3.8RSS results

	Chapter 4
	4.1Conclusions
	4.2Progress Analysis
	4.3Future Work

	Reference
	Appendix A C# code
	A.1RespawnController
	A.2Test navigator

	Appendix B Matlab code
	B.1Tsai’s calibration

	Appendix C Python code
	C.1JOL algorithm
	C.2RSS algorithm


